Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cardiovasc Res ; 119(3): 772-785, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35950218

RESUMO

AIMS: Macrophages have a critical and dual role in post-ischaemic cardiac repair, as they can foster both tissue healing and damage. Multiple subsets of tissue resident and monocyte-derived macrophages coexist in the infarcted heart, but their precise identity, temporal dynamics, and the mechanisms regulating their acquisition of discrete states are not fully understood. To address this, we used multi-modal single-cell immune profiling, combined with targeted cell depletion and macrophage fate mapping, to precisely map monocyte/macrophage transitions after experimental myocardial infarction. METHODS AND RESULTS: We performed single-cell transcriptomic and cell-surface marker profiling of circulating and cardiac immune cells in mice challenged with acute myocardial infarction, and integrated single-cell transcriptomes obtained before and at 1, 3, 5, 7, and 11 days after infarction. Using complementary strategies of CCR2+ monocyte depletion and fate mapping of tissue resident macrophages, we determined the origin of cardiac macrophage populations. The macrophage landscape of the infarcted heart was dominated by monocyte-derived cells comprising two pro-inflammatory populations defined as Isg15hi and MHCII+Il1b+, alongside non-inflammatory Trem2hi cells. Trem2hi macrophages were observed in the ischaemic area, but not in the remote viable myocardium, and comprised two subpopulations sequentially populating the heart defined as Trem2hiSpp1hi monocyte-to-macrophage intermediates, and fully differentiated Trem2hiGdf15hi macrophages. Cardiac Trem2hi macrophages showed similarities to 'lipid-associated macrophages' found in mouse models of metabolic diseases and were observed in the human heart, indicating conserved features of this macrophage state across diseases and species. Ischaemic injury induced a shift of circulating Ly6Chi monocytes towards a Chil3hi state with granulocyte-like features, but the acquisition of the Trem2hi macrophage signature occurred in the ischaemic tissue. In vitro, macrophages acquired features of the Trem2hi signature following apoptotic-cell efferocytosis. CONCLUSION: Our work provides a comprehensive map of monocyte/macrophage transitions in the ischaemic heart, constituting a valuable resource for further investigating how these cells may be harnessed and modulated to promote post-ischaemic heart repair.


Assuntos
Macrófagos , Infarto do Miocárdio , Camundongos , Humanos , Animais , Macrófagos/metabolismo , Infarto do Miocárdio/metabolismo , Monócitos/metabolismo , Miocárdio/metabolismo , Fagocitose , Camundongos Endogâmicos C57BL
2.
Front Med (Lausanne) ; 9: 1008527, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36405591

RESUMO

Candida auris is a globally emerging fungal pathogen responsible for causing nosocomial outbreaks in healthcare associated settings. It is known to cause infection in all age groups and exhibits multi-drug resistance with high potential for horizontal transmission. Because of this reason combined with limited therapeutic choices available, C. auris infection has been acknowledged as a potential risk for causing a future pandemic, and thus seeking a promising strategy for its treatment is imperative. Here, we combined evolutionary information with reverse vaccinology approach to identify novel epitopes for vaccine design that could elicit CD4+ T-cell responses against C. auris. To this end, we extensively scanned the family of proteins encoded by C. auris genome. In addition, a pathogen may acquire substitutions in epitopes over a period of time which could cause its escape from the immune response thus rendering the vaccine ineffective. To lower this possibility in our design, we eliminated all rapidly evolving genes of C. auris with positive selection. We further employed highly conserved regions of multiple C. auris strains and identified two immunogenic and antigenic T-cell epitopes that could generate the most effective immune response against C. auris. The antigenicity scores of our predicted vaccine candidates were calculated as 0.85 and 1.88 where 0.5 is the threshold for prediction of fungal antigenic sequences. Based on our results, we conclude that our vaccine candidates have the potential to be successfully employed for the treatment of C. auris infection. However, in vivo experiments are imperative to further demonstrate the efficacy of our design.

3.
Circ Res ; 127(9): e232-e249, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-32811295

RESUMO

RATIONALE: After myocardial infarction, neutrophils rapidly and massively infiltrate the heart, where they promote both tissue healing and damage. OBJECTIVE: To characterize the dynamics of circulating and cardiac neutrophil diversity after infarction. METHODS AND RESULTS: We employed single-cell transcriptomics combined with cell surface epitope detection by sequencing to investigate temporal neutrophil diversity in the blood and heart after murine myocardial infarction. At day 1, 3, and 5 after infarction, cardiac Ly6G+ (lymphocyte antigen 6G) neutrophils could be delineated into 6 distinct clusters with specific time-dependent patterning and proportions. At day 1, neutrophils were characterized by a gene expression profile proximal to bone marrow neutrophils (Cd177, Lcn2, Fpr1), and putative activity of transcriptional regulators involved in hypoxic response (Hif1a) and emergency granulopoiesis (Cebpb). At 3 and 5 days, 2 major subsets of Siglecfhi (enriched for eg, Icam1 and Tnf) and Siglecflow (Slpi, Ifitm1) neutrophils were found. Cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) analysis in blood and heart revealed that while circulating neutrophils undergo a process of aging characterized by loss of surface CD62L and upregulation of Cxcr4, heart infiltrating neutrophils acquired a unique SiglecFhi signature. SiglecFhi neutrophils were absent from the bone marrow and spleen, indicating local acquisition of the SiglecFhi signature. Reducing the influx of blood neutrophils by anti-Ly6G treatment increased proportions of cardiac SiglecFhi neutrophils, suggesting accumulation of locally aged neutrophils. Computational analysis of ligand/receptor interactions revealed putative pathways mediating neutrophil to macrophage communication in the myocardium. Finally, SiglecFhi neutrophils were also found in atherosclerotic vessels, revealing that they arise across distinct contexts of cardiovascular inflammation. CONCLUSIONS: Altogether, our data provide a time-resolved census of neutrophil diversity and gene expression dynamics in the mouse blood and ischemic heart at the single-cell level, and reveal a process of local tissue specification of neutrophils in the ischemic heart characterized by the acquisition of a SiglecFhi signature.


Assuntos
Infarto do Miocárdio , Infiltração de Neutrófilos , Neutrófilos/citologia , Neutrófilos/fisiologia , Animais , Antígenos Ly/imunologia , Doenças da Aorta/patologia , Aterosclerose/patologia , Autoanticorpos/farmacologia , Células da Medula Óssea , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Comunicação Celular , Senescência Celular , Mapeamento de Epitopos/métodos , Adesões Focais , Proteínas Ligadas por GPI/metabolismo , Perfilação da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Isoantígenos/metabolismo , Antígenos Comuns de Leucócito , Lipocalina-2/metabolismo , Macrófagos/fisiologia , Camundongos , Infarto do Miocárdio/sangue , Neutrófilos/metabolismo , Especificidade de Órgãos , Receptores de Superfície Celular/metabolismo , Receptores de Formil Peptídeo/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Baço/citologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...